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Abstract 11 

Stratigraphic correlation and age modelling are fundamental to reconstructing Earth’s history, biological 12 

evolution, and palaeoclimate, and underpin the exploration for subsurface resources. Correlations are 13 

produced by integrating diverse stratigraphic data across multiple sites, typically by visual inspection. Here, 14 

we introduce ‘StratoBayes’, a Bayesian statistical framework that combines stratigraphic correlation and 15 

depositional age estimation of stratigraphic horizons, i.e. age modelling. Our method aligns quantitative 16 

signals from two or more sites by shifting and scaling, allowing for sedimentation rate changes between 17 

stratigraphic partitions. The likelihood of an alignment is evaluated by how well the adjusted signals 18 

conform to a shared smooth trend, represented by a cubic spline. Tie points or independent age constraints, 19 

such as radiometric dates or biostratigraphic markers, can be integrated within this framework, providing 20 

age estimates for all sites. Our approach identifies multiple alignments where distinct alternatives exist, 21 

estimates their relative probabilities, and quantifies the uncertainty associated with correlations and age 22 

estimates. We apply StratoBayes to a lower Cambrian dataset comprising a combination of δ13C records, 23 

radiometric dates and astrochronology from four sites in Morocco and Siberia. The results demonstrate its 24 

capacity to quantify existing alignments, and provide the first precise age estimate for the evolutionary 25 

appearance of trilobites in Siberia, one of the hallmarks of the Cambrian Explosion. Beyond this 26 

application, StratoBayes offers a generalisable framework for probabilistic stratigraphic correlation, with 27 

potential to improve age models across a range of proxy records and time intervals. 28 
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Non-technical short summary (max 500 char) 29 

StratoBayes is a novel Bayesian method for aligning stratigraphic data from multiple sites. It integrates 30 

diverse information, such as geochemical signals and radiometric dates, and provides robust age estimates 31 

with quantified uncertainty for all sites. We use StratoBayes to correlate lower Cambrian δ13C records from 32 

Morocco with an undated record from Siberia, and estimate the age of the world’s oldest trilobites. 33 

1 Introduction 34 

Stratigraphic correlation works on the basis that rocks that were deposited under similar conditions or at 35 

the same time tend to share characteristics that allow for their attribution to a stratigraphic or temporal 36 

horizon. For example, insofar as temporal changes in the global δ13C composition of seawater are reflected 37 

in marine sedimentary rocks, matching trends of changing δ13C in rock sections from different locations 38 

can be used to place those sections on a relative time scale (Cramer and Jarvis, 2020; Saltzman et al., 2012). 39 

Quantitative signals such as isotopic compositions, elemental concentrations or geophysical well-log data 40 

present a particular challenge: in aligning those signals by eye, the stratigrapher has to make a large number 41 

of intuitive decisions about which peaks and troughs are likely to line up. Trying to integrate all the 42 

stratigraphic evidence from multiple sites often results in more than one potential alignment solution and 43 

differing interpretations between different workers (Bowyer et al., 2022, 2023; Landing and Kruse, 2017; 44 

Smith et al., 2016). 45 

Computer algorithms have been designed to address the problems arising from visual correlation 46 

(Agterberg, 1990; Lisiecki and Lisiecki, 2002; Rudman and Lankston, 1973). Algorithms designed for 47 

aligning quantitative signals from two or more sites typically use a point-based approach, aligning each 48 

point of site A with zero, one or multiple points from site B. This approach proposes variable sedimentation 49 

rates between points. This flexibility in principle allows the most precise alignments, though potentially at 50 

the cost of overfitting. Point-based algorithms commonly use dynamic time warping (DTW), a technique 51 

that finds the optimal match between two time-series data by adjusting their alignment (Sakoe and Chiba, 52 

1978). For a selection of recent approaches using dynamic time warping for stratigraphic alignment, see 53 

Wheeler and Hale (2014); Hay et al. (2019); Baville et al. (2022); Sylvester (2023); and Hagen et al. (2024). 54 

The limitations of DTW-based approaches are that they commonly require known section tops and bottoms 55 

(Sylvester, 2023); and they are generally deterministic, providing only a single solution without any 56 

indication of uncertainty or alternative alignments (but see Al Ibrahim, 2022; Hay et al., 2019). The 57 
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integration of additional stratigraphic information besides the quantitative signals tends to be difficult, 58 

requiring extra steps outside of the core DTW-algorithm (e.g. Hagen and Creveling, 2024). 59 

Probabilistic approaches overcome some of these limitations by estimating the probabilities of different 60 

outcomes, rather than producing deterministic predictions. An effective probabilistic approach is offered 61 

by the Bayesian framework, which integrates multiple sources of uncertainty by combining prior 62 

knowledge, encapsulated mathematically as a prior probability distribution, with a custom likelihood 63 

function that is used to evaluate the likelihood of observed data. Given an appropriate prior and likelihood 64 

function it is straightforward to integrate different different types of stratigraphic information. Lee et al. 65 

(2022) have implemented a Bayesian method that uses Gaussian process regression to match Cenozoic 66 

oxygen isotope data from one site to an oxygen isotope stack, while simultaneously integrating age 67 

estimates from radiocarbon dates to produce probabilistic age-depth models (i.e. the BIGMACS model). 68 

This method improves upon earlier approaches by specifying uncertainty for tie points and integrates prior 69 

knowledge on Cenozoic sedimentation rates with absolute age information from the aligned site. However, 70 

age uncertainties from the reference site are not included, and varying sampling resolution or large 71 

sedimentation rate changes may violate model assumptions and impede the broader adoption of this method 72 

in its current form (Middleton et al., 2024). Edmonsond and Dyer (2024) have developed a different 73 

Bayesian method based on Gaussian process regression that works without prior knowledge of 74 

sedimentation rates, but requires minimum and maximum age estimates for all sections, and the absence of 75 

an explicit prior on sedimentation rates may risk overfitting. 76 

Here, we introduce a versatile Bayesian method for stratigraphic correlation and age modelling that can 77 

align quantitative signals from two or more sites without the need to specify tie points or top and bottom 78 

ages, and with no restrictions on sampling frequencies. Possible sedimentation rates can be specified by the 79 

user as priors, and the likelihood encompasses the alignment of the signals and, optionally, additional age 80 

constraints such as dated horizons. The method requires only vague prior knowledge on the ages and on the 81 

degree of overlap of the sections, along with order-of-magnitude estimates of sedimentation rates; it is not 82 

necessary to specify matching section tops or bottoms. The model is able to integrate radiometric dates 83 

from different sites, meaning that ages from well-dated sites can inform age estimates at sites with little or 84 

no age information. Age estimates with uncertainty can thus be obtained for any point within any site, and 85 

alternative alignments can be identified. Additional stratigraphic knowledge, such as hiatuses or tie points, 86 

can be readily incorporated. 87 

Our Bayesian model works by evaluating the fit of a single cubic spline (Heaton et al., 2020) to the 88 

combined quantitative signal of all sites. If more than one type of signal is included, e.g. δ13C and δ18O, a 89 

different spline is constructed for each signal type, and their joint likelihood is used to evaluate the 90 
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alignment. Different alignments are generated by shifting the sites relative to each other, and by scaling 91 

segments of the sites using different sedimentation rates. Markov chain Monte Carlo methods are used to 92 

obtain the posterior distributions of the unknown model parameters. Our method is implemented as an R 93 

package, ‘StratoBayes’. 94 

To demonstrate the potential of this method, we apply it to artificial stratigraphic data and to a real case 95 

study using lower Cambrian δ13C records from Morocco (Magaritz et al., 1991; Maloof et al., 2005, 2010; 96 

Tucker, 1986) and Siberia (Kouchinsky et al., 2007). Integrating radiometric dates (Landing et al., 1998, 97 

2021; Maloof et al., 2010), we provide age estimates for the studied sections of an interval spanning several 98 

lower Cambrian carbon isotope excursions, and compare our algorithm-derived correlation with recent 99 

stratigraphic models relying on visual expert-based interpretations (Bowyer et al., 2022, 2023). Our solution 100 

also provides a fully quantitative age estimate for the appearance of the first Siberian trilobites, which are 101 

thought to be the world’s oldest trilobites (Landing et al., 2021). 102 

2 Bayesian stratigraphic model 103 

StratoBayes generates and evaluates alignments of quantitative stratigraphic signals. A signal consists, for 104 

example, of geochemical or geophysical measurements that vary across height or depth (Fig. 1a), obtained 105 

from a contiguous sedimentary sequence which may be interrupted by hiatuses at known horizons. 106 

Alignments are generated by shifting the sites containing the signals either a) against a fixed reference site, 107 

or b) against each other on an absolute age scale. Additionally, the sites are scaled (“stretched” or 108 

“squeezed”) assuming different sedimentation rates. The fit of different alignments, corresponding to 109 

different shifts and sedimentation rates, is evaluated in the Bayesian framework. 110 

Statistical analysis in the Bayesian framework starts by formulating a probabilistic model that includes 111 

known data 𝑦 and unknown model parameters 𝜃. Instead of trying to identify a single estimate for 𝜃, 112 

Bayesian inference involves estimating probability distributions for the model parameters, termed 113 

“posterior probability distributions”. Posterior distributions are obtained by combining prior knowledge of 114 

the parameters with the data via a likelihood function. Bayes’ theorem states that the probability of the 115 

parameters given the data, 𝑝(𝜃|𝑦), i.e. the posterior probability, is proportional to the probability of the 116 

data given the model parameters (i.e. the likelihood), 𝑝(𝑦|𝜃), times the prior probability of the model 117 

parameters, 𝑝(𝜃): 118 

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃)  (1) 119 
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In our case, this approach requires specifying prior probability distributions for the unknown model 120 

parameters that control the shifting and scaling (Fig. 1b), and optionally for the duration of pre-determined 121 

hiatuses. Our model assumes that the measurements in each sedimentary sequence are samples (with noise) 122 

from a common underlying signal, whose value can be modelled by a smooth curve described by a cubic 123 

B-spline. Our likelihood function quantifies how well a cubic B-spline fitted to a given alignment explains 124 

the observed data (Fig. 1c). Additional likelihood components can integrate absolute age constraints such 125 

as radiometric dates or other tie points, e.g. index fossils. Using Bayes’ theorem, the priors are combined 126 

with the likelihood to obtain the posterior probability for any alignment. 127 

We obtain probability distributions for the parameters of the model by running a Markov chain Monte Carlo 128 

(MCMC) simulation. This involves repeatedly generating parameter values over a large number of 129 

iterations. To ensure thorough exploration of the parameter space, we run multiple chains in parallel but 130 

retain samples only from the primary (cold) chain. An initial portion of the samples is discarded (burn-in) 131 

to remove dependency on starting values, and only every nth iteration is recorded to reduce autocorrelation. 132 

Details on the MCMC implementation are provided in Appendix A. 133 

In the following, we will assume that measurements were taken on a height scale (increasing from the 134 

bottom to the top), but depth-scale measurements can be used interchangeably by inverting their sign. 135 

 

Figure 1: Schematic of the alignment algorithm. a) Input data: Quantitative stratigraphic measurements 

(e.g. geochemical data) from two sites recorded along their section height (here given in meters). b) 

Priors must be placed on the shift parameter 𝛼 and on the relative sedimentation rate 𝛾. Here, 𝛼 

determines the reference height (at Site 1) corresponding to the top of the height range of Site 2, and 𝛾 

corresponds to the sedimentation rate of Site 2 relative to Site 1. c) An alignment corresponding to a 
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single sample from the posterior. The blue dashed line indicates the position of the top of the data from 

Site 2 at the reference height scale (𝛼; median: 12.5 m). The relative sedimentation rate 𝛾 has been 

estimated at a median of 2.8, corresponding to a shortening of the dataset from Site 2 relative to the 

reference site (indicated by the dashed and solid light brown line). The curved grey line shows the 

cubic B-spline corresponding to the alignment. 

2.1 Evaluating alignments with a cubic B-spline 136 

Identifying good alignment positions requires evaluating and comparing different potential alignments. In 137 

the Bayesian framework, the measure used for this evaluation is the likelihood. We derive the likelihood of 138 

an alignment from its fit to a single cubic B-spline (Eilers and Marx, 1996), fitted to the measurements from 139 

all sites, including the reference site (see Fig. 1c). 140 

We model each measured value 𝑦𝑖 as normally distributed: 141 

𝑦𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖 , 𝜎),  (2) 142 

where 𝜇𝑖 is the mean, and the standard deviation 𝜎 represents the scatter around the spline. 𝜇𝑖 is given by 143 

the spline function 144 

𝜇𝑖 = ∑𝛽𝑗𝐵𝑗(ℎ𝑖)

𝑘+2

𝑗=1

  (3) 145 

Here, 𝑘 denotes the number of internal knots of the spline, with more knots implying that the spline can 146 

potentially capture higher-frequency variations. 𝛽𝑗 is the spline coefficient associated with the 𝑗-th basis 147 

function, and 𝐵𝑗(ℎ𝑖) is the 𝑗-th B-spline basis function evaluated at a reference height ℎ𝑖. A roughness 148 

penalty controlled by a smoothing parameter 𝜆 is incorporated in the prior on 𝛃, such that higher values of 149 

𝜆 serve to favour smoother splines (Appendix A). The number of knots and the roughness penalty each 150 

influence spline flexibility in different ways: increasing 𝑘 provides a finer resolution for fitting local 151 

features, whereas increasing 𝜆 penalizes abrupt changes and yields smoother fits. The knots for the spline 152 

can be distributed across the reference height range that the converted measurement heights occupy for a 153 

specific combination of 𝛼 and 𝛾 parameters. Our current model implementation uses evenly spaced knots, 154 

but knot placement could also follow, for example, the density of measurements. Alternatively, the knots 155 

can be fixed at specific heights on the reference scale, in which case combinations of 𝛼 and 𝛾 that result in 156 

converted measurement heights falling outside the knot range cannot be evaluated. 157 
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The likelihood of an alignment, given 𝛃, 𝜎 and 𝜆, is determined by the residual deviations of the 𝑦𝑖 values 158 

from the corresponding 𝜇𝑖 values. The overall likelihood for 𝑛 data points is obtained by taking the product 159 

over all individual likelihoods for each pair of 𝑦𝑖 and 𝜇𝑖: 160 

𝐿(𝐲|𝛃, 𝜎, 𝜆) =∏
1

√2𝜋𝜎2

𝑛

𝑖=1

× 𝑒
(−

(𝑦𝑖−𝜇𝑖)
2

2𝜎2
)
  (4) 161 

We thus assume that the deviations of the data from the spline are independently and identically distributed 162 

according to a normal distribution with mean 0 and standard deviation 𝜎. 163 

Our model allows for using more than one type of measurement simultaneously. In this case, a separate 164 

spline is fitted to all data, from all sites, for each type of measurement. The product of all likelihoods from 165 

all measurement types gives the overall likelihood. 166 

2.2 Alignment and partitioning 167 

In order to generate alignments of stratigraphic signals from different sites, one site is picked as a fixed 168 

reference site. The other sites are shifted and stretched (or squeezed) relative to the fixed reference site 𝑟. 169 

This requires specifying a height 𝛼𝑠, which anchors an arbitrary, specified height of site 𝑠 to a height in the 170 

reference site 𝑟. Here, we anchor the top of site 𝑠, so we set 𝛼𝑠 = 𝛼𝑡𝑜𝑝,𝑠 meaning 𝛼𝑡𝑜𝑝,𝑠 will be the height 171 

at site 𝑟 that aligns with the top of site 𝑠. To stretch or squeeze site 𝑠, a relative sedimentation rate 𝛾𝑠 can 172 

be specified, where 𝛾𝑠 is defined relative to the reference site. For any height ℎ𝑥,𝑠 at site 𝑠, the corresponding 173 

height in the reference site 𝑟 can then be calculated as 174 

ℎ𝑟 = 𝛼𝑡𝑜𝑝,𝑠 −
1

𝛾𝑠
× (ℎ𝑡𝑜𝑝,𝑠 − ℎ𝑥,𝑠) ,  (5) 175 

where ℎ𝑡𝑜𝑝,𝑠 is the height of the top of site 𝑠. Although we here chose the top of site 𝑟 as the reference 176 

horizon 𝛼 for simplicity, any horizon at site 𝑟 can be used as 𝛼. A 𝛾𝑠 < 1 implies that site 𝑠 has a lower 177 

sedimentation rate than site 𝑟, and consequently, 𝑠 has to be stretched to match 𝑟. A 𝛾𝑠 > 1, i.e. a higher 178 

sedimentation rate at site 𝑠 will lead to 𝑠 being squeezed to match 𝑟. 179 

The model described here is simple in that the same 𝛾 is applied to all measurements of the same site. In 180 

this scenario, any site may be used as the reference site. Below, we introduce more complex models with 181 

more than one sedimentation rate per site, and with hiatuses. With these models, it is practical to select the 182 

site with the most sedimentation rate changes and hiatuses as the reference site. This reduces the number 183 

of unknown parameters in the model, making it easier to obtain a representative sample from the posterior. 184 

https://doi.org/10.5194/egusphere-2025-1355
Preprint. Discussion started: 4 April 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

2.2.1 Multiple sedimentation rates per site 185 

Instead of having one sedimentation rate per site, sites can be partitioned, reflecting for example lithological 186 

units, with each partition being modelled with a distinct sedimentation rate: 187 

ℎ𝑟 = 𝛼𝑡𝑜𝑝,𝑠 − ∑ (
1

𝛾𝑝
× (ℎ𝑝,𝑠 − ℎ𝑝+1,𝑠))

𝑛𝑝,𝑠−1

𝑙

−
1

𝛾𝑛𝑝,𝑠
× (ℎ𝑛𝑝,𝑠 − ℎ𝑥,𝑠) ,     𝑝 = 1. . . 𝑛𝑝,𝑠  (6) 188 

Here, 𝑛𝑝,𝑠 is the number of partitions encountered from ℎ𝑡𝑜𝑝 to ℎ𝑥,𝑠, ℎ𝑝,𝑠 is the top height of partition 𝑝 at 189 

site 𝑠, and ℎ𝑝+1,𝑠 is the top height of the partition below partition 𝑝 at site 𝑠. If ℎ𝑥,𝑠 falls in the first partition 190 

from the top, the calculation simplifies to the equivalent of Equation 5, with ℎ𝑃𝑠, the top height of the first 191 

partition being also the top height of site 𝑠. The relative sedimentation rates of partitions, 𝛾𝑝, can differ for 192 

each partition in each site, or partitions in different positions within a site or across sites may share 193 

sedimentation rates. 194 

2.2.2 Site-specific sedimentation rate multipliers 195 

The sedimentation rate model above can be further expanded by adding an overall site-specific 196 

sedimentation rate multiplier 𝜁𝑠: 197 

ℎ𝑟 = 𝛼𝑡𝑜𝑝,𝑠 − ∑ (
1

𝜁𝑠𝛾𝑝
× (ℎ𝑝,𝑠 − ℎ𝑝+1,𝑠))

𝑛𝑝,𝑠−1

𝑙

−
1

𝜁𝑠𝛾𝑛𝑝,𝑠
× (ℎ𝑛𝑝,𝑠 − ℎ𝑥,𝑠) ,     𝑝 = 1. . . 𝑛𝑝,𝑠  (7) 198 

This may be useful in scenarios where sedimentation rates systematically differ between sites, perhaps due 199 

to varying distances from a sediment source, but where the sedimentation rate ratios of different partitions 200 

are assumed to be constant across sites. 201 

2.2.3 Hiatuses 202 

Known hiatuses (also referred to as unconformities or stratigraphic gaps) can be included at specific pre-203 

defined locations in a site. Expanding Equation 5 to include gaps of height 𝛿, we obtain 204 

ℎ𝑟 = 𝛼𝑡𝑜𝑝,𝑠 −
1

𝛾𝑠
× (ℎ𝑡𝑜𝑝,𝑠 − ℎ𝑥,𝑠) −∑𝛿𝑔

𝑛𝐺𝑠

𝑔

 ,     𝑔 = 1. . . 𝑛𝐺𝑠  (8) 205 

where 𝑛𝐺𝑠 is the number of gaps encountered from ℎ𝑡𝑜𝑝,𝑠 until height ℎ𝑥,𝑠. 206 
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2.2.4 Tie points 207 

Tie points define specific heights within an aligned site and assign a probability distribution to indicate to 208 

which horizon these heights correspond on the reference scale. For example, a tie point might be a 209 

lithological boundary, a biostratigraphic horizon, or a radiometric date. If tie points are specified, the 210 

likelihood of an alignment is expanded to include not only the fit of the signal data to the spline, but also 211 

the positions of the ties on the reference height scale relative to the specified probability distribution. 212 

For example, a point in an aligned section which is tied by observation to the reference section at a position 213 

𝑚𝑡 with a normally distributed uncertainty with standard deviation 𝑠𝑡 that ends up being shifted to a 214 

reference height ℎ𝑡 (computed from the relevant 𝛼 and 𝛾 parameters) contributes a likelihood of 215 

𝐿(𝑚𝑡|ℎ𝑡, 𝑠𝑡) =
1

√2𝜋𝑠𝑡
2
× 𝑒

(−
(𝑚𝑡−ℎ𝑡)

2

2𝑠𝑡
2 )

  (9) 216 

to the overall likelihood of the model. 217 

2.2.5 Age-scale alignment 218 

Data on an (absolute) age scale can be aligned using the methods introduced above by using ages instead 219 

of heights. However, height-scale data can be aligned on an age-scale if absolute age constraints (specified 220 

as ties) are provided from at least one site. In this case, all sites will be shifted to align on a common age 221 

scale, i.e., there is no reference site. 222 

Analogous to the heights in the reference height scale in Equation 5, ages (𝑎) can be calculated as: 223 

𝑎 = 𝛼𝑡𝑜𝑝,𝑠 +
1

𝛾𝑠
× (ℎ𝑡𝑜𝑝,𝑠 − ℎ𝑥,𝑠)   (10) 224 

Here, 𝛼𝑡𝑜𝑝,𝑠 is the top age (minimum age), rather than top height (maximum height), of site 𝑠. Sedimentation 225 

rates 𝛾𝑠 need to be expressed on the common age scale, rather than relative to a reference site. Equations 226 

6–8 can be modified accordingly for an analysis on the age scale. 227 

It should be noted that due to sedimentation rates being fixed for an entire site or within partitions, our 228 

current model implementation does not necessarily result in increasing age uncertainty away from absolute 229 

age constraints. Potential sedimentation rate changes within sites or partitions could lead to our model 230 

underestimating age uncertainty with growing stratigraphic distance from absolute age constraints (see De 231 

Vleeschouwer and Parnell, 2014). 232 
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2.3 Priors 233 

The Bayesian framework requires priors to be placed on all unknown model parameters. In our model, these 234 

include the alignment parameters (e.g. 𝛼, 𝛾), the smoothing parameter 𝜆, the residual standard deviation 𝜎 235 

(if it is not fixed), and the spline coefficients 𝛃. The priors on the alignment parameters determine the range 236 

of possible alignments and need to be chosen with care. For the other parameters, weakly informative priors 237 

with minimal influence on the analysis are preferred (Appendix A). In addition to those priors, we penalise 238 

a lack of overlap by specifying a prior probability of data points from different sites overlapping each other. 239 

2.3.1 Alignment parameters 240 

The priors on the alignment parameters should reflect the stratigraphic knowledge on the input data. The 241 

user may specify different types of prior distributions (e.g., normal, uniform, exponential) for the alignment 242 

parameters during model setup. 243 

• 𝛼 determines the reference site (site 𝑟) height or age that a specific position within the aligned site 244 

(site 𝑠) corresponds to. In the absence of prior knowledge on how the sites are likely to align, a 245 

uniform prior can be placed on 𝛼. For example, if 𝛼 refers to the top of site 𝑠, a uniform prior on 246 

𝛼 with min and max equal to the height or age range of site 𝑟 implies that the top of site 𝑠 will be 247 

placed within the height range of site 𝑟. 248 

• 𝛾 is either a relative (height scale alignment) or an absolute (age scale alignment) sedimentation 249 

rate. In our model implementation, priors are placed on the natural logarithm of 𝛾, ln(𝛾), rather 250 

than on 𝛾 directly. Specifying rate parameters on the logarithmic scale ensures that their priors are 251 

symmetric: a doubling or halving of a rate has equivalent distances on the logarithmic scale. If the 252 

sedimentation rate is relative, ln(𝛾) < 0 (i.e. 𝛾 < 1) results in “stretching”, and ln(𝛾) > 0 253 

(i.e. 𝛾 > 1) results in “squeezing” of site 𝑠 relative to site 𝑟. In the absence of strong prior 254 

knowledge about the relative sedimentation rate, a normal prior on ln(𝛾) with a mean of 0 places 255 

equal prior probability on “stretching” or “squeezing” of site 𝑠 relative to site 𝑟. The standard 256 

deviation requires at least a broad guess of the potential magnitude of sedimentation rate 257 

differences. For example, a standard deviation of 
ln(4)

1.96
 places 95% of prior probability on 

1

4
<258 

𝛾 < 4 for ln(𝛾) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0,
ln(4)

1.96
). If 𝛾 is an absolute sedimentation rate, the range of plausible 259 

prior sedimentation rates may be estimated from the absolute age constraints. 260 
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• 𝜁𝑠 is a multiplier applied to all relative or absolute sedimentation rates 𝛾 corresponding to a single 261 

site 𝑠. As with 𝛾, ln(𝜁𝑠) < 0 (i.e. 𝜁𝑠 < 1) causes additional “stretching”, and ln(𝜁𝑠) > 1 (i.e. 𝜁𝑠 >262 

0) causes additional “squeezing” of site 𝑠. 263 

• 𝛿 is the reference height range or duration of a hiatus. An exponential prior may be useful when 264 

little is known about the extent of the hiatus, placing higher probabilities on short extents. The 265 

rate needs to be chosen to make sense in the context of the height of the sections, or of the 266 

anticipated age range of the sites. 267 

2.3.2 Penalising a lack of overlap 268 

Individual splines fitted to data from each site separately can almost always follow the data more closely 269 

than a single spline fitted to aligned data from all sites. Given enough knots, alignments in which the data 270 

do not overlap, or only overlap little, will thus generally result in a higher likelihood than alignments with 271 

a partial or full overlap. This means that if the priors allow non-overlapping alignments, those will generally 272 

be preferred in the model inference. To counteract this tendency, we impose a prior on the overlap of each 273 

individual data point from all sites that penalises non-overlap with data from other sites. 274 

The prior on overlap for data point 𝑖 from site 𝑠 is 275 

𝑃(𝑖𝑠) = 𝑒(−√𝑆−1+√𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑝,𝑠,𝑖)×𝑐𝑜𝑣𝑒𝑟𝑙𝑎𝑝  ,  (11) 276 

where 𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑝,𝑠,𝑖 is the number of other sites overlapping the reference height ℎ𝑟 or age 𝑎 of point 𝑖𝑠, and 277 

𝑐𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is a constant. This formulation implies that the penalty for a point 𝑖𝑠 that overlaps all other sites is 278 

0, and the penalty is strongest (most negative) if 𝑖𝑠 overlaps no other sites. To work effectively, the penalty 279 

needs to be stronger for data sets with little noise (low residual 𝜎), to offset the larger likelihood differences 280 

resulting from fitting a spline with low 𝜎. A range of 𝑐𝑜𝑣𝑒𝑟𝑙𝑎𝑝 values may work in practice. A formulation 281 

that we have found works well in many scenarios sets 282 

𝑐𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑐 ×
1

𝑆
∑(

𝜎𝑦,𝑠

𝜎𝑠
)
𝑞

𝑆

𝑠=1

  (12) 283 

where 𝑐 is a constant determining the strength of the overlap penalty (set to a default of 𝑐 =
1

4
), 𝑞 = 1 if 𝜎 284 

is fixed, and 𝑞 =
1

2
 if 𝜎 is variable (i.e. estimated in the model inference). Here, 𝜎𝑦,𝑠 is the standard deviation 285 

of all data 𝑦 from site 𝑠, and 𝜎𝑠 is the residual standard deviation of a Bayesian spline fitted to the data 𝑦 286 

from site 𝑠, using the same priors as for the overall model inference. 287 
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3 Model illustration 288 

We illustrate the performance of our stratigraphic alignment method with a simple, artificial dataset (Fig 289 

2a). We generated measurements from a reference site (Siteref) using a sine wave covering 3.5 periods, 290 

where each period corresponds to 2𝜋 radians. To generate the signal data, we intercepted this sine wave at 291 

heights ℎ with 250 evenly spaced points per period, i.e. the number of data points (𝑛) is 3.5 × 250 = 875. 292 

Each signal value 𝑦𝑖 was generated with random white noise 𝜎 =
1

5
 added, such that 293 

𝑦𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜂𝑖sin (ℎ𝑖 −
1

2
𝜋) , 𝜎) ,     𝑖 = 1. . . 𝑛  (13) 294 

The factor 𝜂𝑖 modulates the amplitude of the sine wave at each height ℎ𝑖. It was set to 𝜂 = 1 for the heights 295 

ranging from −0.5𝜋 to 5𝜋, and to 𝜂 = 0.75 from heights 5𝜋 to 6.5𝜋, which reduces the amplitude 296 

beginning in the middle of the third period of the sine wave. The aligned signal was simulated as above, 297 

but from a sine wave covering one period, sampling 250 data points, again with random noise using 𝜎 =
1

5
 298 

and 𝜂 = 1. To simulate a sedimentation rate twice as high as at the reference site, we multiplied the heights 299 

of Sitealign by 2. The heights of Sitealign were then shifted to start at 0. 300 

The aligned signal should thus match either the first or the second, but not the third period of the reference 301 

signal. To align the two sites, we used a simple model with a site-specific shift 𝛼, referring to the top of 302 

Sitealign and relative sedimentation rate 𝛾 as in Equation 5. From the data generation, we know that the 303 

posterior of 𝛾 should be ≈ 2, with ln(𝛾) ≈ 0.69, and 𝛼 (defined as the reference height corresponding to 304 

the top height of Sitealign) should be ≈ 2𝜋 (top of first period) or ≈ 4𝜋 (top of second period). 305 

To minimise the influence of the priors, we used a uniform prior on 𝛼 that extends well beyond the 306 

alignment positions known from generating the data, and a broad normal prior on ln(𝛾) that encompasses 307 

the known sedimentation rate 𝛾 = 2 (Fig. 2b): 308 

𝑃(𝛼) ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−𝜋, 8𝜋)  (14) 309 

𝑃(ln(𝛾)) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)  (15) 310 

These priors place 95% of prior probability for the relative sedimentation rate of Sitealign between 0.14 and 311 

7.1, and place the top of Sitealign anywhere from half a period below the start of the first period (−𝜋) up to 312 

one period above the third period (8𝜋). For the cubic spline, we specify 20 evenly spaced knots, which is 313 

more than enough to approximate the three periods of the sine wave. 314 
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We estimated the posterior of the model with three independent runs, each with 16 chains and 60,000 315 

iterations. The first 10,000 samples were discarded as burn-in, and every 25𝑡ℎ iteration was recorded, 316 

resulting a total of 6000 samples after burn-in across all three independent model runs. 317 

The results show that the analysis identified both matching alignments, corresponding to the first and 318 

second period of the reference site (Fig. 2b). The posterior probability for (Sitealign) matching period 1 is 319 

50.1%, and 49.9% for matching period 2. A density plot of the posterior of 𝛼 and ln(𝛾) shows that 𝛼 has a 320 

bimodal posterior, corresponding to the two alignments (Fig. 2c). The trace plots indicate good mixing of 321 

the chains (Fig. 2d), suggesting that the posterior estimates are robust. 322 

It is notable that the model estimate for the relative sedimentation rate 𝛾 is lower at 1.90 (95% credible 323 

interval: 1.82 to 1.99) than the value used for the data generation (2.00). Reported values, here and 324 

throughout, represent the posterior median, with 95% credible intervals – given in brackets – refer to the 325 

interval between the 2.5% and 97.5% points of the posterior distribution. This deviation of the posterior 326 

from the known sedimentation rate estimate arises because the priors favour greater overlap (see Sect. 327 

2.3.2). The posterior alignment tends to “compress” the data from Sitealign slightly less than expected, 328 

leading to an increased overlap of points (see also Fig. 5b). 329 
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Figure 2: Model illustration using artificial data. a) Input data: Quantitative stratigraphic data from two 

sites. The blue line indicates the range in which 𝑆𝑖𝑡𝑒𝑟𝑒𝑓 was created with 𝜂 = 1, and the purple line 

above indicates the range for which 𝜂 was set to 0.75 to lower the amplitude. b) Two alignments 

identified by the inference, with (Sitealign; blue squares) matching the first or second period of (Siteref; 

red points). The alignments shown here correspond to two distinct samples from the posterior; other 

samples will result in slightly different positions of (Sitealign). The curved dark lines show the cubic 

spline corresponding to each alignment. c) Posterior densities of 𝛼 and ln(𝛾). The two modes of 𝛼 

correspond to the two distinct alignments in b). The dotted lines indicate the 𝛾 values with which 

(Sitealign) was simulated, and the two plausible 𝛼 values. d) Trace plots of 𝛼 and ln(𝛾). The three 

distinct colours correspond to the three independent model runs. For visual clarity, only 75 selected 

samples are shown from each run. 

https://doi.org/10.5194/egusphere-2025-1355
Preprint. Discussion started: 4 April 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

4 Case study: Lower Cambrian δ13C records 330 

To demonstrate the utility of this method, we use it to align stable carbon isotope records (δ13C) from lower 331 

Cambrian marine shelf carbonates (Fig. 3). We integrate a combination of radiometric dates, δ13C and 332 

astrochronological information from four sites to obtain age estimates for the sampled intervals from all 333 

sites, and use this age model for dating the first documented occurrence of Siberian trilobites. 334 

4.1 Data 335 

We selected three records from the Anti-Atlas mountains in Southern Morocco, corresponding to the Oued 336 

Sdas, the Tiout and the Talat n’ Yissi sections, which were part of West-Gondwana during the early 337 

Cambrian (Magaritz et al., 1991; Maloof et al., 2005, 2010; Tucker, 1986). Oued Sdas and Tiout harbour 338 

multiple precise U-Pb radiometric ages (Landing et al., 2021; Maloof et al., 2010). Talat n’ Yissi has no 339 

radiometric dates, but a radiometric date exists from the stratigraphically equivalent Lemdad syncline 340 

(Landing et al., 1998) that has been correlated biostratigraphically to Talat n’Yissi with the Antatlasia gutta-341 

pluviae zone (Maloof et al., 2005); we include this date in the analysis. We will align these sites with each 342 

other, and with a δ13C record from the Sukharikha section from the northwestern Siberian platform 343 

(Kouchinsky et al., 2007), corresponding to the palaeocontinent Siberia. There are no radiometric dates 344 

available for the Siberian section for this stratigraphic interval. Data that was inferred to be below the lower 345 

leg of the prominent “5p” excursion (lowest peak in Fig. 3a and d) was excluded to simplify the correlation, 346 

reducing the number of modelled sedimentation rates unconstrained by radiometric dates. This cropping of 347 

data affects the Oued Sdas and Sukharikha sections; Fig. 3 shows all data that was included in the analysis. 348 
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Figure 3: Cambrian δ13C data and radiometric dates from Morocco (a - c) and Siberia (d). Different 

colours, in conjunction with different symbols, delineate different lithological units or formations. 

Circles indicate the position of radiometric dates, with mean age and 2 standard deviations denoting the 

uncertainty. Stars denote the positions where the oldest trilobite remains are found in Morocco (a) and 

Siberia (d). The dashed line in (d) indicates a hiatus. 𝛼 indicates the reference horizon chosen for 

specifying the prior on the shift parameter 𝛼 for each site. 

4.2 Model specification 349 

To align the four sites on the age scale, we specify an 𝛼 parameter on the absolute age scale (Ma) for each 350 

site, and use absolute, rather than relative sedimentation rates (expressed in m Myr−1). We encapsulate 351 

variation in sedimentation rates (𝛾) by partitioning sites into members, formations or lithological units, 352 

leading to multiple sedimentation rates per site. As there are few radiometric dates to constrain 353 

sedimentation rates, partitions shared between the Moroccan sites are set to have the same relative 354 

sedimentation rate across sites. To account for potentially faster or slower sedimentation rates at different 355 

sites, a site-specific sedimentation rate multiplier 𝜁 is added for Oued Sdas and Talat n’Yissi that is 356 

multiplied with the 𝛾 from those sites. The 𝛾 for a partition applies to all sites at which this partition occurs; 357 

for Tiout, they are used unaltered, and no 𝜁 is needed for Sukharikha as there are no shared partitions with 358 

other sites. We partition the Moroccan data based on the lithostratigraphy from Maloof et al. (2005). We 359 

divide the Adoudounian Tifnout Member into a lower part (Tifnout l.), and an upper stromatolitic part 360 

(Tifnout stromatolite), as preliminary results suggested pronounced sedimentation variability between those 361 

parts. We subdivide the Lie de Vin Formation into three members; the Igoudine Formation is subdivided 362 

into two members. The Amouslek and Isaafen formations are not subdivided. The Sukharikha section is 363 

divided into two formations, which we assign separate sedimentation rates. At the boundary, a substantial 364 

hiatus is evinced by the truncation of the “7p” δ13C peak (Kouchinsky et al., 2007). We include the duration 365 

of this hiatus (𝛿) as an additional unknown parameter in the model. 366 

The model requires priors to be specified for each of its 18 alignment parameters: Four 𝛼, eleven 𝛾, two 𝜁 367 

and one 𝛿 (Fig. 4). These priors are broadly guided by the radiometric dates and by previous work (Bowyer 368 

et al., 2023; Landing et al., 2021; Sinnesael et al., 2024). The 𝛼 for the Tiout and Sukharikha sites are placed 369 

at the height positions of the first trilobite fossil remains found at Tiout (Sinnesael et al., 2024), and the first 370 

appearance of Siberian trilobites correlated to Sukharikha (Landing et al., 2021; Varlamov et al., 2008). 371 

Here, we place normal distributed priors with mean age 520 Ma and a wide standard deviation of 2 Myr on 372 

the 𝛼 parameters at Tiout and Sukharikha. This prior reflects the notion that first appearance dates of 373 
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trilobites may be broadly similar at ≈ 520 Ma, but not necessarily identical, and the data is allowed to 374 

determine the exact age of each 𝛼. The 𝛼 priors for Oued Sdas and Talat n’Yissi are placed at the position 375 

of the lowest or the only available radiometric date, respectively, consisting of normal distributions with 376 

mean age equal to the mean age estimate of the radiometric data and a wide standard deviation of 2 Myr. 377 

For the sedimentation rates, priors informed by an astrochronology of the Tiout section (Sinnesael et al., 378 

2024) are used for the following five stratigraphic partitions: The lower, middle and upper members of the 379 

Lie de Vin Formation, and for the lower and upper (Tiout Member) members of the Igoudine Formation. 380 

Those priors are chosen such that the 95 percentile interval of 𝛾 spans the minimum and maximum of the 381 

astrochronological sedimentation rate estimates when using an uncertainty of ±1 short eccentricity cycle 382 

for each partition, with an estimated duration of short (≈ 100 kyr) eccentricity cycles ranging from 92.5 to 383 

100.5 kyr (two standard deviations, following Lantink et al., 2022). 384 

To specify priors for the remaining Moroccan partitions (lower part of Tifnout Fm., Tifnout stromatolite, 385 

Amouslek Fm., and Isaafen Fm.), sedimentation rates between the radiometric dates from Oued Sdas and 386 

Tiout are calculated using the mean ages of the dates. The prior on ln(𝛾) is defined as a normal distribution 387 

with a mean of 5.39, corresponding to the mean of the empirical sedimentation rates from Oued Sdas and 388 

Tiout, calculated on the logarithmic scale. A wide standard deviation of 0.75 is set, resulting in the 95 389 

percentile interval of 𝛾 spanning 50.3 to 951 m Myr−1. This interval significantly exceeds the range of 390 

sedimentation rates inferred from the radiometric dates at Oued Sdas and Tiout, 147 to 314 m Myr−1, 391 

allowing for the possibility of lower or higher sedimentation rates in some partitions. 392 

Prior sedimentation rate estimates for the Siberian formations are estimated in the absence of radiometric 393 

dates, very broadly based on global correlations by Bowyer et al. (2023). These correlations suggest average 394 

sedimentation rates on the order of 20 to 30 m Myr−1; we place a normal prior on ln(𝛾) with a mean of 395 

3.30 and a standard deviation of 0.75, resulting in a 95 percentile interval of 𝛾 spanning 6.23 to 396 

117.9 m Myr−1, which allows for the possibility of significantly different sedimentation rates from those 397 

inferred by Bowyer et al. (2023). 398 

Finally, a prior needs to be placed on the duration of the hiatus 𝛿 between the Sukharikha and the 399 

Krasnoporog formations. Kouchinsky et al. (2007) do not give an indication of the potential duration of this 400 

hiatus, but if the under- and overlying δ13C peaks are correlated as indicated by previous work (Bowyer et 401 

al., 2022; Landing et al., 2021), a relatively short hiatus of ≈ 1 Myr is likely. To express considerable 402 

uncertainty about the duration of the hiatus, we place an exponential prior on 𝛿 with a rate of 1, which 403 

places 95% of prior probability on the duration being < 3 Myr, with 5% probability accounting for the 404 

possibility of a longer gap. 405 
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The cubic spline comprises 40 evenly spaced knots, allowing it to closely follow trends in the δ13C records 406 

while keeping the MCMC runtime manageable, as a higher knot count increases computational cost. For 407 

the smoothing parameter 𝜆, we applied a gamma prior with StratoBayes’ default values of 𝑎𝜆 = 1 and 𝑏𝜆 =408 

1000. We fixed 𝜎, which is the residual standard deviation of the overall spline, at 0.66, which is the 409 

average residual standard deviation of individual cubic splines fitted to each δ13C record from the four 410 

respective sites. These individual splines were constructed with 40 knots evenly spaced across the height 411 

range of each respective site and fitted with Gibbs sampling using 2000 iterations, discarding 25% of 412 

samples as burn-in. The same default 𝜆 priors as described above were applied, while the prior for these 413 

splines’ standard deviations was specified as a gamma prior on the precision 𝜏, with 𝑎𝜏 = 𝑏𝜏 = 0.01 (see 414 

Appendix A for details).  415 

 

Figure 4: Priors on the 18 alignment parameters for the Cambrian model. Prior probability density is 

shown (a) for four 𝛼 parameters corresponding to one site each (priors for Tiout and Sukharikha in grey 

are identical), (b) for six 𝛾 (sedimentation rate) parameters with little prior knowledge, (c) for five 𝛾 

parameters from Morocco with tight priors based on astrochronology, (d) for 𝜁 parameters (site-specific 

sedimentation rate multipliers) for Oued Sdas and Talat n’Yissi (identical), and (e) for the duration of 

the hiatus between the Sukharikha and the Krasnoporog formations. The width of the red bar in (b) 

visualises the range of sedimentation rates spanned by (c). Panel (f) visualises two alignments 
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generated by randomly drawing parameter values from their respective priors, to give an indication of 

the broad range of alignments that the priors on the alignment parameters allow; colours correspond to 

the four sites (see Fig. 6). Panels (b), (c), and (d) are depicted with a logarithmic x-axis as the priors 

were specified on ln(𝛾) and ln(𝜁). 

4.3 Parameter estimation 416 

This model is more complex than our earlier examples, and hence requires longer runs with more chains. 417 

We conducted four independent model runs, each with 750,000 iterations and 24 chains. The runs were 418 

executed in parallel using four workers on a desktop computer (Intel i7-10700 CPU, 8 cores / 16 threads, 419 

40 GB RAM) and completed within 5 days. The first 150,000 iterations were discarded as burn-in. From 420 

the remaining 600,000, every 50th iteration was retained, resulting in 12,000 samples per run and 48,000 421 

samples in total. 422 

Inspection of trace plots of the model runs indicates stationarity and good mixing of the chains with the 423 

exception of infrequent visits of secondary posterior modes (Appendix B, Fig. B1). The potential scale 424 

reduction factor (using eq.4 in Vats and Knudson, 2021) is between 1.00 and 1.05 for all alignment 425 

parameters, suggesting approximate convergence of the MCMC. The multivariate effective sample size 426 

(Vats et al., 2019) of the 48,000 samples is 4161. 427 

4.4 Results 428 

To identify distinctly different alignments in the posterior, a hierarchical density-based cluster analysis 429 

(Campello et al., 2015) was conducted using the inferred ages of all partition boundaries of the four sites 430 

(Fig. 4a,b). We specified 1% of samples (480) as the minimum number of points per cluster, resulting in 431 

three distinct clusters with 93%, 2.8% and 2.6% of posterior samples, respectively, and 1.5% of samples 432 

not being assigned to any cluster. These alignment clusters also differ in the prior probabilities and 433 

likelihoods associated with individual posterior samples. On average, samples from alignment 1 tend to 434 

exhibit a lower degree of overlap, but a higher likelihood (Fig. 4c), indicating a better fit to the data. 435 
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Figure 5: (a, b) 2D density plots of the inferred top ages of the four sites, representing some of the ages 

used for obtaining alignment clusters from posterior samples. (c) 2D density plot of the ln prior 

probability of overlap against the overall ln likelihood. Areas with more opaque shadings correspond to 

a higher density of individual posterior samples. Colours correspond to alignment clusters: alignment 1 

- violet; alignment 2 - blue; alignment 3 - green; outlier samples not assigned to any cluster - yellow. 

Using samples from the posterior of the model parameters, alignments can be generated. Fig. 6 visualises 436 

three alignments drawn from the three alignment clusters identified in the posterior. For each alignment 437 

cluster, the iteration with partition boundary ages that are, on average, closest to the median ages of the 438 

partition boundaries within that cluster is selected for displaying. All three alignments exhibit a good match 439 

between the long-term trends of the δ13C curves from the four sites and the common spline curve, although 440 

many shorter-term deviations are visible (Fig. 6a-c). The spline curve notably follows the more densely 441 

sampled sites (Oued Sdas, Talat n’Yissi) more so than the thinly sampled sites (Tiout, Sukharikha), 442 

resulting in greater deviations of the latter two sites. 443 

The posterior age estimates for the stratigraphic positions of the radiometric dates broadly match the age 444 

estimates that were used as inputs in the analysis (Fig. 6d). The deviations are greatest for the Talat n’Yissi 445 

date (Ta1), which has large uncertainty and therefore less influence on the analysis, and the second date 446 

from Oued Sdas (Ou2). The first appearances of trilobites are visualised alongside the dates in Fig. 6d, and 447 
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are dated to 519.46 Ma (519.25 to 519.68 Ma) at Tiout. The age estimate for the first Siberian trilobites 448 

differs considerably between the different alignment solutions: For the most likely alignment 1, the age 449 

estimate is 520.79 Ma (520.98 to 520.61 Ma), and for alignment 2 the estimate is somewhat higher at 521.05 450 

Ma (521.19 to 520.91 Ma). Alignment 3 suggests a significantly later appearance of Siberian trilobites at 451 

519.98 Ma (520.15 to 519.84 Ma). All three alignments place the appearance of the first Siberian trilobites 452 

before their appearance at Tiout, with the temporal gap (computed directly from the posterior distribution) 453 

being estimated at 1.33 Myr (1.09 to 1.54 Myr) for alignment 1, 1.71 Myr (1.54 to 1.87 Myr) for alignment 454 

2, and 0.63 Myr (0.53 to 0.74 Myr) for alignment 3. 455 

 

Figure 6: Three possible alignments identified by the inference with Cambrian data. (a) Exemplary 

sample from the cluster of the most likely alignment (93% of posterior samples). (b, c) Exemplary 

samples from a second and third identified alignment cluster (2.8% and 2.6% of posterior samples, 

respectively). Each shown alignment corresponds to a single sample from the posterior; other samples 

will result in slightly different alignments. 1.5% of samples were not assigned to any cluster (see Fig. 

5). The curved dark lines show the cubic B-splines corresponding to each visualised sample. The 

coloured bars to the right of each alignment show the median duration of the stratigraphic partitions 

under each respective alignment cluster, based on the median ages of partition boundaries, with colours 

repeating the colour scheme of Fig. 2. (d) Posterior density of the inferred ages corresponding to the 
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radiometric dates to the left (3 from Tiout, 4 from Oued Sdas, and 1 from Talat n’Yissi) and the first 

occurrences of trilobites at Tiout (Ti tril.) and Sukharikha (Sh tril.) to the right, in colours. All samples 

from all alignment clusters were included. Greater width corresponds to higher posterior density; all 

densities are scaled to have the same maximum for better visibility. Densities representing the 

uncertainties of radiometric dates based on their mean and standard deviation are shown in grey (left). 

The faint yellow shading to the right shows the prior density on 𝛼, i.e. the first appearance of trilobites 

at Tiout and Siberia based on a mean age of (520 Ma) and a standard deviation of 2 Myr (identical for 

Tiout and Siberia). Colours and shapes of the points correspond to the four sites: Tiout - brown circles; 

Oued Sdas - pink squares; Talat n’Yissi - green diamonds; Sukharikha - blue triangles. 

The posterior of the model runs allows the construction of age models that span the entire height of each 456 

site (Fig. 7). As sedimentation rates are constrained to be constant within the pre-defined partitions, 457 

sedimentation rate changes are visible as inflections at the boundaries of these partitions. Age uncertainties 458 

are relatively low at Tiout and most of Oued Sdas, which are relatively well constrained by radiometric 459 

dates in the top (Tiout) and middle (Oued Sdas) parts of the sections, as well as by astronomical priors on 460 

sedimentation rates. Uncertainty noticably increases towards the top and bottom of Oued Sdas. The lowest 461 

partition of Oued Sdas is constrained only by its match to the lower part of the Sukharikha Fm., their age 462 

estimates are thus varying considerably between different alignments (Fig. 6). Differences in the positioning 463 

of the δ13C curves between alignments are greatest at Talat n’Yissi and the Siberian Krasnoporog Fm. (Fig. 464 

6), which results in large uncertainties in the age models (Fig. 7c, d). 465 
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Figure 7: Age-depth model for each of the four sites. The solid lines indicate the median posterior ages 

corresponding to the respective heights; the shaded interval denotes the 95% credible interval of 

posterior ages. Colours correspond to the colours of partitions introduced in Fig. 3. Circles indicate the 

mean age estimates of radiometric dates, with vertical lines spanning two standard deviations around 

the mean of these age estimates. Stars denote the first appearances of trilobites in Morocco and Siberia. 

5 Discussion 466 

5.1 Lower Cambrian stratigraphy 467 

We used StratoBayes to correlate and date four lower Cambrian carbonate sections using δ13C records, 468 

radiometric dates and astrochronological sedimentation rate estimates. From a large space of possible 469 

alignment configurations (Fig. 4), the software identified alignment solutions that visibly match the large-470 
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scale features in the δ13C records from multiple sites, while simultaneously achieving an approximate fit to 471 

the radiometric dates (Fig. 6). 472 

The most likely alignment solution from the posterior, alignment 1 (probability = 93%), results in a 473 

correlation of the three Moroccan sites that has much in common with that proposed by Maloof et al. (2005). 474 

In our model, we used common sedimentation rates for the stratigraphic partitions (members, formations) 475 

shared between the sites, whilst allowing sedimentation rates to systematically differ from the reference 476 

sedimentation rates at Tiout by adding a site-specific multiplier. This multiplier, 𝜁, is 1.02 (95% credible 477 

interval: 0.97 to 1.08) for Oued Sdas, meaning the model estimates very similar sedimentation rates for 478 

Tiout and Oued Sdas (Fig. 6a), consistent with their close geographical proximity. Sedimentation rates for 479 

the shared partitions at Talat n’Yissi are lower by a factor of 0.86 (0.76 to 0.96), which would be consistent 480 

with a moderately lower accommodation space at Talat n’Yissi relative to Tiout and Oued Sdas (as 481 

suggested by Fig. 3B in Maloof et al., 2005). We deliberately chose broad priors that did not explicitly 482 

enforce a relationship between sedimentation rates and palaeogeography; nonetheless, the model identified 483 

a geologically plausible solution. In contrast, the higher 𝜁𝑇𝑎𝑙𝑎𝑡 𝑛′𝑌𝑠𝑠𝑖 of alignment 2 (probability = 2.8%, 484 

1.07 to 1.37) and alignment 3 (probability = 2.6%, 2.07 to 2.45) are harder to reconcile with the 485 

palaeogeographic context. 486 

Alignments 2 and 3 also suggest different sedimentation rates between Tiout and Oued Sdas, with a higher 487 

value of 𝜁𝑂𝑢𝑒𝑑 𝑆𝑑𝑎𝑠 (1.13 to 1.26) being estimated by alignment 2, and a lower value of 𝜁𝑂𝑢𝑒𝑑 𝑆𝑑𝑎𝑠 (0.83 to 488 

0.88) by alignment 3. The most consistent lithostratigraphic alignment between Tiout and Oued Sdas is 489 

achieved by alignment 1, meaning that the age estimates for partition boundaries (based on members or 490 

formations) are most similar (Fig. 6). For the more distant Talat n’Yissi, age estimates of partition 491 

boundaries differ to varying degrees across all three alignments. 492 

Breaking down the posterior probability into individual components – likelihood (fit of δ13C measurements 493 

to the spline, fit of age estimates to the radiometric dates) and prior probability from the overlap penalty – 494 

reveals that samples from alignment 1 have a higher likelihood, on average (Fig. 5c). In contrast, alignments 495 

2 and 3 have a greater number of overlapping δ13C points, which results in higher overlap prior probabilities 496 

(Fig. 5c). The overlap prior reflects the prior belief that substantial parts of the sections involved in the 497 

correlation should be overlapping. However, the weight of that prior is somewhat arbitrary and reflects the 498 

technical requirement to facilitate overlap despite non-overlap allowing for closer fit to the spline, similar 499 

to the role of the “edge value” in some DTW implementations (Hay et al., 2019). A lower prior weight on 500 

overlap would thus have caused alignments 2 and 3 to receive lower posterior probabilities relative to 501 
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alignment 1. Taken together, the evidence from above leads us to strongly favour alignment 1, and we will 502 

focus further discussion on that most likely alignment solution. 503 

A radiometric date of 517.0 Ma (±2 SD:  515.5 − 518.5 Ma) has been recovered from the Lemdad 504 

Syncline in the Atlas mountains (Landing et al., 1998), and has been correlated biostratigraphically to a 505 

horizon in the lower Isaafen Fm. at Talat n’Yissi (Maloof et al., 2005). In our alignment 1, this horizon has 506 

a posterior age estimate of 519 Ma (519.2 to 518.8 Ma) – ≈ 2 Myr older than the mean of the radiometric 507 

date. This date has informed the age estimates for Talat n’Yssi in Maloof et al. (2005) and Maloof et al. 508 

(2010), whereas alignment 1 produces age estimates close to those of Bowyer et al. (2022) and Bowyer et 509 

al. (2023). Age estimates deviating from radiometric dates are not necessarily incorrect: Although 510 

radiometric dates are sometimes treated as “absolute truth” within the stratigraphic community, they are 511 

the result of various sources of technical uncertainties (Condon et al., 2024) and geological interpretations 512 

like the actual zircon crystallisation versus eruption age (Keller et al., 2018). This is illustrated by the 513 

recalculation of the radiometric date from Landing et al. (1998) to 515.56 Ma (±2 SD:  514.40 −514 

516.72 Ma) in the Geological Time Scale 2012 (Schmitz et al., 2012). 515 

The two radiometric dates measured at Tiout at the bottom of and within the Amouslek Formation suggest 516 

a sedimentation rate of 146 m Myr−1 (±2 SD: 78.7 to 613 m Myr−1) for the Amouslek formation. However, 517 

the posterior estimates for the sedimentation rate in the Amouslek formation are poorly constrained and 518 

high compared to the sedimentation rates of all other partitions, at 3030 m Myr−1 (800 to 17,300 m Myr−1). 519 

It appears that the model has overestimated the Amouslek sedimentation rate in aligning the δ13C record of 520 

the overlying Isaafen formation with a part of the Siberian Krasnoporog formation which has similar δ13C 521 

values (Fig. 6a). The alignments of Bowyer et al. (2022) imply significant sedimentation rate changes 522 

within the Krasnoporog formation, allowing the δ13C records to be better reconciled with the radiometric 523 

dates. We didn’t allow for sedimentation rate changes within the Krasnoporog formation because the 524 

stratigraphic log of Kouchinsky et al. (2007) indicates a uniform facies. Additional sedimentation rate 525 

changes might lead to a closer alignment with the radiometric dates, at the cost of greater model complexity. 526 

The alignment of the Siberian Sukharikha section with the Moroccan sites is relatively precise in the lower 527 

half of the records: The prominent positive δ13C excursions interpreted as the “5p” and “6p” excursions 528 

have a similar magnitude both at Oued Sdas and Sukharikha, and are readily aligned visually (Bowyer et 529 

al., 2022) and by our model (Fig. 6). Our model aligns the main 6p peak of Sukharikha with the first subpeak 530 

of the second large excursion at Oued Sdas, as in model C in Bowyer et al. (2022). The lesser, positive 531 

excursion below the hiatus at the top of the Sukharikha formation lines up with the positive excursion in 532 

the lower Lie-de-Vin formation, representing the “II” peak as in model C in Bowyer et al. (2022). The upper 533 
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parts of the Moroccan records and the Siberian Krasnoporog formation appear to be aligned primarily by 534 

matching the prominent positive excursion interpreted as excursion “IV” (Bowyer et al., 2022; Kouchinsky 535 

et al., 2007). The “III” peak below is only weakly expressed at Oued Sdas, leading to uncertainty in the 536 

alignment with the corresponding part of the Krasnoporog formation, and in the inferred duration of the 537 

hiatus even within alignment solution 1 (Fig. B2a-c). Similarly, considerable uncertainty exists in how the 538 

top of Talat n’Yissi corresponds to the Krasnoporog formation. This is evident from variations between 539 

samples in alignment solution 1 (Fig. B2a-c) and in the wide credible intervals of those parts of the age 540 

models (Fig. 7). The relatively small magnitude of δ13C changes limits the model’s ability to identify a 541 

definitive alignment solution for that part of the record. 542 

Our estimate for the Moroccan first appearance of trilobites at Tiout from alignment 1, 519.47 Ma (519.68 543 

to 519.26 Ma), is slightly younger and somewhat less precise than the recent, astrochronological estimate 544 

of 519.62 Ma (95% highest posterior distribution: 519.70 to 519.54 Ma) by Sinnesael et al. (2024). We 545 

attribute this difference to our model simultaneously combining different data types from multiple sites. 546 

Additionally, Sinnesael et al. (2024) allowed sedimentation rates to vary between cycles, whereas our model 547 

assumed a single sedimentation rate per member. In our alignment 1 solution, the highest δ13C values of 548 

Tiout correlate to shortly after the peak of the IV δ13C excursion. This correlation suggests that the actual 549 

peak of the excursion at Tiout has not been sampled by Magaritz et al. (1991) and Tucker (1986), which 550 

may result in misalignments when correlating the record to other sections. Further δ13C samples from the 551 

lower Igoudine and upper Lie-de-Vin formation at Tiout are required to improve correlation with other 552 

sections, including the correlation presented herein. 553 

Our model successfully reconstructs the first appearance of trilobites at Tiout, within error, despite using a 554 

simpler astrochronology and enforcing a less variable sedimentation rate history than Sinnesael et al. 555 

(2024). It also provides the first fully quantitative estimate for the first appearance of trilobites in Siberia 556 

based on chemostratigraphic correlation and the Moroccan radiometric dates and astrochronology, at 557 

520.79 Ma (520.98 to 520.61 Ma). This refines earlier estimates of ≈ 521 Ma (Landing et al., 2021), and 558 

quantifies the temporal gap between the appearance of trilobites in Siberia and Morocco as 1.33 Myr (1.09 559 

to 1.54 Myr). We do not suggest that these estimates are definitive; indeed, we anticipate that the 560 

incorporation of additional δ13C data from Tiout, the inclusion of astrochronological estimates of individual 561 

short eccentricity cycles, and the relaxation of the assumption of constant sedimentation rates within 562 

partitions may update the estimate. A high-resolution temporal sequence of trilobite first occurrence dates 563 

could be used to delineate trilobite evolutionary rates and dispersal; to evaluate evolutionary hypotheses on 564 

the origins and biomineralisation of trilobites (Holmes and Budd, 2022; Paterson et al., 2019); and to inform 565 

the definition of the base of the Cambrian Series 2 (Zhang et al., 2017). 566 
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5.2 Statistical alignment and age modelling 567 

5.2.1 Advantages of Bayesian stratigraphic alignment 568 

As shown above, our algorithm can identify the correct alignment positions in scenarios with one (Fig. 1) 569 

or more than one (Fig. 2) known solution. In scenarios where more than one distinctly different alignment 570 

is identified, the probability of each solution, given the specified data and model, is identified. This can be 571 

used to evaluate the likelihood of competing models for the alignment of stratigraphic records found by 572 

visual (e.g. Bowyer et al., 2023; Landing and Kruse, 2017) or algorithmic (e.g. Hay et al., 2019) correlation. 573 

The requirement to specify priors for the alignment parameters can be leveraged to provide information 574 

beyond that which is contained in the signals: for example, information on sedimentation rates may be 575 

expressed in the prior. 576 

Because our model can integrate absolute age constraints such as radiometric dates, a user is able to 577 

correlate stratigraphic records and construct probabilistic age models in a single step. In our Cambrian 578 

example, the posterior alignment and the posterior age model are thus influenced by the priors, the 579 

quantitative signals and the radiometric dates. In contrast, age models constructed in a separate step after 580 

identifying alignments do not reflect uncertainty arising during the alignment stage (Hagen and Creveling, 581 

2024). 582 

In our integrated approach, discrepancies between radiometric dates and signal alignment are resolved 583 

probabilistically, with the model weighting the available evidence based on its likelihood and prior 584 

information. This means that posterior age estimates may diverge from the age information provided by 585 

radiometric dates, as seen with the Ou2 date in Fig. 6d. This is not necessarily a deficiency of the model; 586 

rather, it indicates that the priors and non-radiometric data provide sufficiently strong evidence to suggest 587 

that the actual age of the horizon associated with the radiometric date falls toward the tails of its confidence 588 

interval, or that the radiometric uncertainty may be underestimated. Some degree of discrepancy is expected 589 

when integrating multiple data types rather than relying on a single proxy (see also Lee et al., 2022). 590 

If, on the other hand, the user wishes to increase the influence of radiometric dates on the posterior age 591 

estimates, this can potentially be achieved by introducing additional sedimentation rate changes to allow 592 

more flexible alignment of the proxy signals, reducing the weight of the proxy signal records – such as by 593 

imposing a larger 𝜎 for the cubic spline – or by weakening priors. 594 
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5.2.2 Model choice and priors 595 

Stratigraphic alignment using algorithms has the advantage of removing some of the inherent subjectivity 596 

of visual alignment (Sylvester, 2023). Yet, somewhat subjective decisions are still explicitly or implicitly 597 

made with every alignment algorithm. In the case of DTW, subjectivity is introduced e.g. with restrictions 598 

on the warping path (i.e. relative sedimentation rates, Sakoe and Chiba, 1978), with the amount of overlap 599 

required between sections (Hay et al., 2019), or with the choice of an exponent controlling the weight of 600 

outlier values (Wheeler and Hale, 2014). All of those settings can alter the outcome of DTW-based 601 

alignments. Likewise, our Bayesian approach comes with a number of subjective choices. The appropriate 602 

model structure can be readily determined when the data-generating process is known (Sect. 3), but has to 603 

be carefully considered and potentially revised when dealing with complex real-world data (Sect. 4). 604 

Lithological data may guide the partitioning of data and can inform somewhat objective choices of horizons 605 

with likely sedimentation rate changes (Sect. 4.2), but such information may not be readily available with 606 

some datasets, such as with well logs. 607 

Besides the model structure, StratoBayes requires the user to specify priors for several model parameters: 608 

relative or absolute sedimentation rates (𝛾, 𝜁), the shifts of sections relative to one another (𝛼), the duration 609 

of hiatuses (𝛿), the degree of smoothing of the spline (𝜆), the extent to which overlap of signal points should 610 

be favoured (𝐶𝑜𝑣𝑒𝑟𝑙𝑎𝑝), and optionally the residual standard deviation of the spline (𝜎). Although the choice 611 

of any of those parameters has the potential to affect posterior alignments and age models, they also offer 612 

a chance to explicitly include geological information that could otherwise only be incorporated by 613 

discarding or modifying alignment solutions after the algorithmic alignment. 614 

5.2.3 Challenges with the δ13C and sedimentary record 615 

Chemostratigraphy, and, more broadly, correlating geological sections based on proxy data relies on the 616 

proxies accurately reflecting a common, underlying signal. Several processes may disrupt this assumption. 617 

For example, δ13C recorded in carbonates differs between different depositional environments, water 618 

depths, and grain types (Geyman and Maloof, 2021), while the δ13C recorded in restricted basins may be 619 

offset significantly relative to contemporary carbonates elsewhere (Uhlein et al., 2019). Where known, such 620 

offsets could be accounted for by subtracting or adding the estimated offset relative to global values. 621 

Alternatively, anticipated offsets could be modelled as additional unknown variables, as in Edmonsond and 622 

Dyer (2024). This approach will likely require substantial prior knowledge on the potential magnitude and 623 

direction of offsets; otherwise, the combination of variation along the height or time axis and along the 624 

proxy value axis may result in a large range of mathematically feasible alignments. 625 
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Several challenges arise from the variability of sedimentation and the incompleteness of the sedimentary 626 

record. Sediment accumulation rates vary with measurement scale (Sadler, 1981): closer spacing between 627 

measurements allows more variability to be identified, with actual sedimentation rate histories displaying 628 

fractal properties (Miall, 2015). This implies that depositional ages tend to vary non-linearly along a 629 

vertically sampled sedimentary section, with substantial incompleteness in shallow-water records (Curtis 630 

et al., 2025). These discontinuities can lead to drastically altered shapes of proxy curves from different 631 

depositional settings, and cycles from periodic proxy fluctuations may be missed due to insufficient 632 

preservation or sampling (Curtis et al., 2025). This issue is evident in the Sukharikha section, where it is 633 

somewhat ambiguous whether the hiatus represents a fraction of a δ13C excursion (alignment 1 and 2) or 634 

extends over more than one full cycle (alignment 3, Fig. 6). For correlations within sedimentary basins, the 635 

method of Bloem and Curtis (2024) could help resolve ambiguous alignments by reconstructing 636 

depositional histories through geological process modelling, but this method requires exceptionally high-637 

resolution sampling and its utility has yet to be demonstrated with real-world data sets. 638 

Besides the completeness, the sampling density of proxy records may influence correlations. In 639 

StratoBayes, densely sampled sections or parts of sections exert more influence on the shape of the spline 640 

than those that are thinly sampled, which can be seen in the spline curve primarily following the densely 641 

sampled Oued Sdas and Talat n’Yissi records in Fig. 6. Despite this, our Cambrian case study demonstrates 642 

that sections with differing sampling densities – both between and within sites – can still be effectively 643 

aligned. Varying sampling density would, however, pose a challenge for reconstructing a global average 644 

proxy curve from local records, as the global curve would primarily reflect the more densely sampled sites. 645 

StratoBayes introduces a simplification in modelling sedimentary histories by forcing uniform 646 

sedimentation rates within pre-defined segments of a stratigraphic section. An effect of this simplification 647 

can be seen in the age-depth plots in Fig. 7: Due to sedimentation rates being modelled as uniform within 648 

stratigraphic partitions, the uncertainty of age estimates does not necessarily decrease away from the 649 

radiometric dates. We acknowledge that this may underestimate the uncertainty associated with potential 650 

sedimentation rate variability (De Vleeschouwer and Parnell, 2014), especially when allowing for few 651 

sedimentation rate changes. 652 

In principle, our method could be used to divide stratigraphic sections into an arbitrary number of segments 653 

with differing sedimentation rates. In practice, estimating the parameters of a model with more than a low 654 

double-digit number of alignment parameters (shift parameters, sedimentation rates, hiatuses) represents a 655 

challenge for the current implementation of the MCMC algorithm within StratoBayes, as finding and 656 

exploring the posterior becomes increasingly difficult as more parameters are added. This limitation could 657 

be alleviated by incorporating MCMC methods suited for higher dimensional problems and difficult 658 
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posterior geometries. Alternatively, a continuous process model such as the compound Poisson-gamma 659 

process of BChron (Haslett and Parnell, 2008) might be integrated with our model for the proxy signal, but 660 

again the complexity of the MCMC would increase. Another approach would be to divide the alignment 661 

problem into sub-problems, e.g. by multiple pairwise correlation of sites (e.g. Hagen et al., 2024; Sylvester, 662 

2023), or by correlating shorter subsections. 663 

5.3 Towards quantitative stratigraphy 664 

Quantitative stratigraphic correlation and age modelling of diverse geological data represent a long-665 

standing challenge in stratigraphic research. Although many algorithms exist for correlating stratigraphic 666 

data (e.g. Baville et al., 2022; Bloem and Curtis, 2024; Hay et al., 2019; Sylvester, 2023); few can readily 667 

provide uncertainty estimates or incorporate different types of data simultaneously (e.g. Al Ibrahim, 2022; 668 

Edmonsond and Dyer, 2024; Lee et al., 2022). Consequently, integrated statistical approaches have only 669 

rarely been applied to complex real-world stratigraphic problems (Hagen et al., 2024; Lee et al., 2022). 670 

Our new method has the potential to be applied to diverse datasets; examples range from shallow borehole 671 

data from the Holocene (Finlay et al., 2022) to Proterozoic carbonates (Halverson et al., 2010). The ability 672 

of our model to incorporate multiple proxy records simultaneously opens new possibilities for refining 673 

stratigraphic correlations. For instance, correlations involving both δ13C and δ87Sr records could benefit 674 

from a probabilistic framework that accounts for their respective uncertainties (Bowyer et al., 2022). The 675 

integration of multiple proxies, e.g. multiple element ratios, in the StratoBayes framework could allow 676 

correlations based on the entire record of all proxies, rather than a few visually distinct transitions (Craigie, 677 

2015). 678 

Beyond geochemical records, our approach could also be applied e.g. to geophysical well-logs such as 679 

gamma ray or density logs, and magnetostratigraphic records could be correlated directly rather than relying 680 

on visually interpreted polarity reversals (Langereis et al., 2010). While index fossils can currently be 681 

integrated as tie points, the modelling framework could be expanded to explicitly model first and last 682 

occurrences to better incorporate biostratigraphic uncertainty. Similarly, astrochronological constraints can 683 

be expressed as priors on sedimentation rates, but an additional model component would be needed to 684 

incorporate all astrochronological information from a given site (Sinnesael et al., 2024). 685 

Conclusions 686 

StratoBayes is a Bayesian modelling framework for the probabilistic alignment of stratigraphic proxy 687 

records and age modelling. It correlates quantitative proxy signals such as isotope ratios, and integrates 688 
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additional stratigraphic information such radiometric dates, to construct probabilistic age models. Applying 689 

our model to both simulated data and real-world stratigraphic records from the lower Cambrian of Morocco 690 

and Siberia, we have demonstrated its ability to account for uncertainty from all model components and to 691 

identify multiple plausible alignment solutions. Our lower Cambrian case study provides a fully 692 

probabilistic estimate for the first appearance of trilobites in Siberia, and quantifies the temporal gap 693 

between their first occurrence and the oldest Moroccan trilobites. While our results remain dependent on 694 

model assumptions, they represent a step towards a more objective and reproducible approach to early 695 

Palaeozoic stratigraphy; they also highlight sources of uncertainty and identify targets for future research. 696 

Beyond this case study, StratoBayes has broad applicability to stratigraphic problems across all time 697 

intervals that involve the correlation of quantitative proxy records. 698 

Appendix A: Markov chain Monte Carlo sampling scheme 699 

Appendix A details the Metropolis-within-Gibbs sampling scheme and the parallel tempering framework 700 

that are used within the StratoBayes software to sample from the posterior of the unknown model 701 

parameters. 702 

The MCMC sampling includes an adaptive phase. During this phase, proposal distributions and the 703 

probabilities with which different proposal types are selected for the Metropolis-Hastings updates are 704 

adjusted based on the history of the MCMC chains to improve acceptance rates and mixing. Additionally, 705 

the temperature ladder of the parallel tempering framework is updated to improve the swap rates of chains. 706 

After the adaptive phase, the proposal distributions and probabilities, as well as chain temperatures, remain 707 

fixed for the remainder of the run to ensure proper sampling from the posterior. 708 

In the current implementation, the length of the adaptive phase is pre-determined by the user, specified as 709 

a fixed number of iterations. However, the user has the option to extend the adaptation period by continuing 710 

the run if needed. More generally, adaptation could also be stopped automatically based on criteria such as 711 

mixing within chains (Yang and Rosenthal, 2017) or convergence criteria. 712 

Adaptive MCMC algorithms do not always preserve the stationarity of the target distribution during the 713 

adaptive phase (Roberts and Rosenthal, 2009). Therefore, all samples from the adaptive phase are discarded 714 

as burn-in. Additionally, if diagnostic checks suggest that the MCMC has not converged by the end of the 715 

adaptive phase, further samples may need to be discarded. 716 
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Gibbs sampling scheme for the cubic B-splines 717 

The following sampling scheme was adapted from Heaton et al. (2020). The spline coefficients are sampled 718 

from a multivariate normal distribution of the form: 719 

𝛽 ∼ 𝑀𝑉𝑁(𝑏𝐐,𝐐) ,  (16) 720 

where 𝑏 is given by . 721 

𝑏 = (𝐁(ℎ))
𝑇 𝑦

𝜎2
,  (17) 722 

𝐁(ℎ) are cubic B-splines (Eilers and Marx, 1996) at a set of 𝑘 knots evaluated at heights ℎ at which 𝑦, the 723 

composite stratigraphic signal of all sites, was observed. Here, 𝜎 is the residual standard deviation. 724 

The other element needed for sampling from the posterior of 𝑏 is 𝑄, given by 725 

𝐐 = (𝐇 + 𝜆𝐃)−1,  (18) 726 

where 𝜆 is a smoothing parameter, 𝐃 is a penalty matrix to prevent the spline from overfitting the data, and 727 

𝐇 = (
𝐁(ℎ)

𝜎
)

𝑇
𝐁(ℎ)

𝜎
  (19) 728 

The standard deviation 𝜎 can be fixed as 729 

𝜎 =
1

𝑆
∑𝜎𝑠

𝑆

𝑠=1

,    (20) 730 

where 𝑆 is the number of sites, and 𝜎𝑠 is the standard deviation of individual splines fitted to the data of site 731 

𝑠. This often provides a good approximation of 𝜎, while removing an unknown model parameter, potentially 732 

facilitating quicker convergence of the model run. 733 

Alternatively, 𝜎 can be estimated within the Gibbs sampling scheme from the data, by placing a conjugate 734 

gamma prior on the inverse of the variance (precision, 𝜏 = 1/𝜎2): 735 

𝜎−2 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎𝜎 +
𝑛𝑦

2
, 𝑏𝜎 +

1

2
∑(𝑦 − 𝛽𝐁(ℎ))

2

𝑛𝑦

)  (21) 736 

The smoothing parameter 𝜆 is estimated by placing a gamma prior on 𝜆: 737 
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𝜆 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎𝜆 +
𝑘

2
,

1

1
𝑏𝜆
+
1
2
∑ 𝛽𝐃 × 𝛽𝑘

)  (22) 738 

Metropolis-Hastings step 739 

The starting heights or ages 𝛼, sedimentation rates 𝛾, site multipliers 𝜁 and gaps 𝛿 are updated in a 740 

Metropolis-Hastings step. For each unknown parameter, a new value is randomly sampled from a proposal 741 

distribution. Initially, proposals are sampled independently for each parameter from its respective prior, or 742 

alternatively from a custom proposal distribution. 743 

In the following, the current set of parameter values is labelled 𝜃, and the proposed set is labelled 𝜃′. To 744 

decide whether to accept or reject the new set of parameters, an acceptance probability 𝐴 is calculated, and 745 

the proposal is randomly accepted or rejected with a probability of 𝐴. This probability is calculated as 746 

𝐴 = 𝑚𝑖𝑛 (1,
𝜋(𝜃′)

𝜋(𝜃)
) ,  (23) 747 

where 𝜋(𝜃) is the unnormalised posterior probability of the current values, and 𝜋(𝜃′) is the unnormalised 748 

posterior probability of the proposed values. These can be calculated as 749 

𝜋(𝜃) = 𝑝(𝜃) × 𝐿(𝑑𝑎𝑡𝑎|𝜃),  (24) 750 

where 𝑝(𝜃) is the prior probability of 𝜃, and 𝐿(𝑑𝑎𝑡𝑎|𝜃) the likelihood of the data given 𝜃. 751 

We calculate the likelihood of the data given 𝜃 as a product of the probability densities of each data point 752 

of the signal 𝑦 (recorded at two or more sites) and of all absolute age information. For the signal, we assume 753 

that the observed values 𝑦 are normally distributed and centred around the values predicted by the splines, 754 

𝜇, at height ℎ, with a standard deviation 𝜎 which has been introduced earlier. The likelihood of a data point 755 

𝑖 from the signal 𝑦 is thus 756 

𝐿(𝑦𝑖|𝜃) =
1

√2𝜋𝜎2
× 𝑒

(−
(𝑦𝑖−𝜇𝑖)

2

2𝜎2
)
  (25) 757 

and the log-likelihood for all data points of the signal is calculated as 758 

ln𝐿(𝑦|𝜃) =∑ln𝐿(𝑦𝑖|𝜃)

𝑖

  (26) 759 
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If more than one type of signal is used, the log-likelihood of additional signals can be calculated analogously 760 

and added in Equation 29. 761 

Age constraints are incorporated by using an age estimate from radiometric dates 𝑑 with, for example, mean 762 

ages 𝑎𝑚𝑒𝑎𝑛 and uncertainties given by standard deviations 𝑎𝑠𝑑. The probability density of a date 𝑑𝑖 is then 763 

calculated as 764 

𝐿(𝑑𝑖|𝜃) =
1

√2𝜋𝑎𝑠𝑑,𝑖
2
× 𝑒

(−
𝑎𝑚𝑒𝑎𝑛,𝑖−𝑎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖

2𝑎𝑠𝑑,𝑖
2 )

  (27) 765 

where 𝑎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 is the age predicted by the age-height transform at the height ℎ𝑠,𝑖, the height at the site 766 

at which date 𝑑𝑖 was obtained. 767 

The log-likelihood for all age constraints is calculated as 768 

ln𝐿(𝑑|𝜃) =∑ln𝐿(𝑑𝑖|𝜃)

𝑖

  (28) 769 

and the overall likelihood, if absolute age constraints are included, is 770 

ln𝐿(𝑦, 𝑑|𝜃) = ln𝐿(𝑦|𝜃) + ln𝐿(𝑑|𝜃)  (29) 771 

Proposal types 772 

In order to allow for a broad search of the parameter space, proposals are initially selected independently 773 

for each parameter, and are selected independently of the current parameter values. These proposals lead to 774 

a decreasing acceptance rate over time, and the chain tends to arrive at a single set of values with high 775 

posterior probability, 𝜋(𝜃), remaining there for many iterations due to frequent rejections. Therefore, 776 

different types of proposals are used after an initial period: 777 

1) Proposing from the prior or a custom distribution: This proposal is used exclusively for a small 778 

number of initial iterations and is alternated with other proposals later on. 779 

2) Adaptive independent (univariate) proposals: Proposals for each parameter are selected 780 

independently from other parameter values. Proposals are dependent on the current state of the 781 

parameter 𝜃𝑖, and sampled from a normal distribution 𝑁(𝜃𝑖, 𝜎𝑖), where 𝜎𝑖 is a standard deviation 782 

that is estimated based on the history of the MCMC chain, i.e. based on the sampled 𝜃𝑖 from 783 

previous iterations. 784 
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3) Adaptive dependent (multivariate) proposals (Roberts and Rosenthal, 2009): Proposals for the 785 

parameters are selected jointly and are dependent on the current state of the parameters 𝜃. 786 

Proposals are sampled from a multivariate normal distribution 𝑀𝑉𝑁(𝜃, 𝛴), where 𝛴 is a 787 

covariance matrix that is estimated based on the history of the MCMC chain, i.e. based on the 788 

sampled 𝜃𝑖 from previous iterations. 789 

4) Shifting some or all 𝛼 and or 𝛿 parameters while keeping the other parameters constant. This can 790 

accelerate the convergence of the MCMC in cases where some sites are aligned with each other, 791 

but offset relative to other sites. 792 

Proposal types are chosen with a probability that broadly corresponds to the relative acceptance probability 793 

of the respective proposal type, i.e. proposal types that are rejected often are chosen less frequently. 794 

Adaptation for types 2) and 3), and the adjustment of proposal type probabilities ends after the adaptive 795 

phase. Posterior samples from the adaptive phase have to be discarded as burn-in, to ensure the correct 796 

convergence of the chain. 797 

Parallel tempering 798 

To avoid the MCMC chain becoming trapped at isolated peaks of the posterior probability distribution, we 799 

implement a parallel tempering framework, following Sambridge (2014). This involves running multiple 800 

chains in parallel. The target chain, the chain from which the posterior samples will be taken, is left 801 

unaltered (“cold chain”). The other chains are tempered, i.e. their unnormalised log posterior probabilities 802 

are raised to the power of 1/𝑇, with 𝑇 being the temperature. The higher 𝑇, the more “flattened” the posterior 803 

probability landscape becomes, and the easier it is for the chain to explore the landscape. Frequently, chain 804 

swaps are proposed, during which the model parameter values of different chains are exchanged with a 805 

Metropolis-Hastings acceptance probability based on the ratios of posterior probabilities of the states of the 806 

two chains, evaluated at both temperatures as in Appendix A2 of Sambridge (2014). 807 

The initial temperatures for a number of chains 𝑛𝑐 are selected using a geometric spacing, with 𝑇1 = 1 (cold 808 

chain) and 𝑇𝑛𝑐 = ∞ (hottest chain). The infinite temperature of the hottest chain implies that all proposals 809 

during the MCMC will be accepted, and we let that chain sample from the prior probability distributions of 810 

the parameters. If 𝑛𝑐 > 2, intermediate chain temperatures are selected as 811 

𝑇𝑐 = 10∑ 𝑑𝑗
𝑐
𝑗=2  ,  (30) 812 

where 813 
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𝑑𝑐 =
(𝑛𝑐 − 1)(2/3)

𝑛𝑐 − 2
+
𝑐 − 1 − (𝑛𝑐 − 1)/2

1.5 ∗ 𝑛𝑐
,     𝑐 = 2. . . 𝑛𝑐 − 1  (31) 814 

This leads to the spacing of temperatures decreasing with increasing number of chains, and temperature 815 

spacing is narrower for lower temperatures on the log scale. A small amount of white noise from a normal 816 

distribution with zero mean and a standard deviation of (5 × 𝑛𝑐)
−1 is added to each 𝑑𝑐 to vary the initial 817 

temperature ladders between independent model runs. Temperatures are updated in the adaptive phase of 818 

the MCMC to increase the swap rates of chains (Vousden et al., 2016). 819 

Appendix B: Inspecting the posterior of the lower Cambrian case 820 

study 821 

Appendix B provides additional details on the posterior of the inference with lower Cambrian δ13C data and 822 

radiometric dates. 823 

Trace plots 824 

Trace plots visualise the evolution of chains from an MCMC and, together with tools such as the potential 825 

scale reduction factor (Gelman and Rubin, 1992; Vats and Knudson, 2021), allow for assessing convergence 826 

of model runs. The trace plot indicative of a well-behaved model run should be stationary after the burn-in 827 

phase, with different chains mixing well (Gelman et al., 1995). An example of a well-behaved trace plot is 828 

the first panel of Fig. B1. Inspecting the trace plots of the 18 model parameters of the lower Cambrian case 829 

study reveals that all parameters seem to have reached stationarity, this said; some chains occasionally visit 830 

distinctly different values (e.g. Fig. B1, column 1, row 2). The chains are not mixing well in those regions 831 

of the parameter space. Running the model for considerably more iterations is likely to overcome this 832 

problem. However, this affects only the less likely alignments; the most likely alignment (alignment cluster 833 

1) is well explored across all parameters. 834 
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Alignment clusters 835 

Summarising the posterior by grouping samples into clusters of similar alignments facilitates discussion of 836 

the results but risks oversimplifying the variation within each cluster. Each cluster represents a set of 837 

posterior samples that share similar inferred ages for the partition boundaries, but differences still exist 838 

between individual samples within the same cluster. As an example, three distinct alignments from cluster 839 

1 are visualised in Fig. B2. An alignment from a sample not assigned to any cluster is shown in Fig. B2d. 840 

Figure B1: Trace plots of the 18 alignment parameters. Each colour corresponds to a distinct run. For 

visual clarity, only 250 samples are displayed per run. The burn-in phase (the first 150,000 iterations)

 is omitted. 
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Posterior of alignment parameters 841 

The posterior distributions of the alignment parameters are summarised in histograms in Fig. B3. 842 

Figure B2: Alternative alignments, each corresponding to a single sample from the posterior. (a) A 

sample from the most likely cluster 1, corresponding to that shown in Fig. 6a. (b, c) Alignments 

corresponding to other samples from cluster 1. (d) Alignment corresponding to an outlier sample that 

was not assigned to any cluster. The curved dark lines show the cubic B-splines corresponding to each 

alignment. 
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Code and data availability 843 

The StratoBayes R package can be installed from binaries by following the instructions at 844 

https://stratobayes.github.io. The data and code used to generate the results, and copies of the software 845 

binaries, are available at https://github.com/StratoBayes/StratoBayes-Manuscript and the linked Zenodo 846 

archive https://zenodo.org/records/15065336. 847 
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Figure B3: Comparison of prior and posterior probability densities. Histograms in colour denote the 

posterior probability densities of the 18 alignment parameters; the grey, smooth shadings represent 

prior probability densities. The four colours correspond to the four independent model runs. 
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